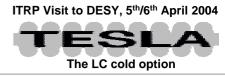


The TESLA Dogbone Damping Ring

Winfried Decking for the TESLA Collaboration April 6th 2004

Outline



The Dogbone

Issues:

- Kicker Design
- Dynamic Aperture
- Emittance Dilution due to Stray-Fields
- Collective Effects
 - Space Charge
 - Impedance
 - Ion effects
 - Electron Cloud

The TESLA Bunch Train

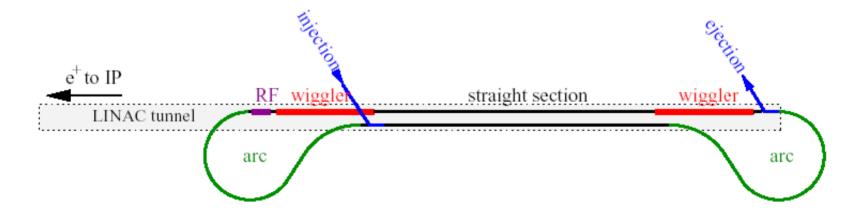

- SC Technology:
 - long RF pulses and thus long bunch trains
 - low frequencies and thus small wake-fields

Benefits:

- High power transfer efficiency
- Straight forward intra-train feedback
- Relaxed LINAC tolerances

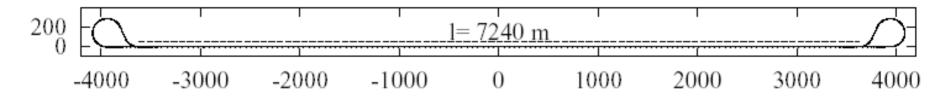
Requires a damping ring (system) which is capable of damping the approximately 1 ms long bunch train at once.

The TESLA Bunch Train


• TESLA bunch train $2820 \times 337 \text{ ns} = 950 \mu\text{s}$

 \Rightarrow 285 km long


 Extract every bunch separately, bunch spacing given by shortest kicker rise/fall time


$$\Rightarrow$$
20 ns \times 2820 \approx 56 μ s \Rightarrow 17 km long

 Save tunnel cost: DR in main linac tunnel and short return arcs ⇒ dogbone

Dogbone Design

- Arc lattice defines momentum compaction (bunch length), chromaticity correction, small emittance
- Wiggler section to provide damping
- Long straight as simple transport line
- Very flexible design: more wigglers, collimation, length chicane,...
- Large energy (5 GeV) to mitigate space charge effects
 - No Intra-beam scattering
 - Touschek-lifetime 30 min

0.6 mrad +0.05%

↑0.01 Tm

Residual: 0.5%

Kicker specifications

- 0.05% amplitude stability
- 40 ns 3MHz pulses, 5Hz repetition \ \(\) Damping ring bunches

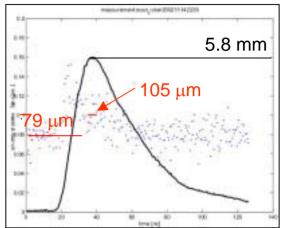
Kicker technology available

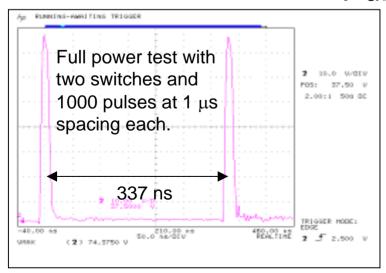
- Strip-line
- Ferrite loaded C-yoke

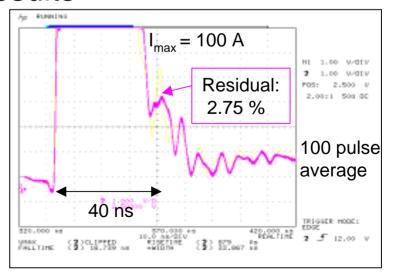
Pulser development based on commercial available MOSFET switches (Behlke)

337 ns

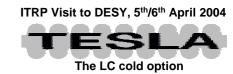
Kicker pulse


Kicker R&D (2)


Kicker system measurements with beam at TTF 1


- measurement of kicker strength with BPM
- •scan of the kicker pulse width with a timing step of 0.5 ns
- 30 pulses for each data point
- Measured amplitude jitter (1 Kicker): 1.2%

30 Kicker: 0.2 %



Pulser results

Kicker R&D (3)

	System	Kicker	Next Steps
	Specification	Measured	
Pulse length	40 ns	30 ns	
Rise time (10%- 90%)	8 ns	4.9ns	
Micro pulse	3 MHz	2 MHz	3 switches parallel
Macro pulse	5 Hz	5 Hz	
Amplitude stability (1/10 σ_x)	0.05 %	1.2 % (0.2% for 30 kickers)	No effort so farApply clipping techniquesApply 180deg kicker
Residual kick	0.5 %	2.75%	Beam based correction

Fast kicker prototype successfully tested

Dynamic Aperture

Incoming positron beam emittance requires large acceptance

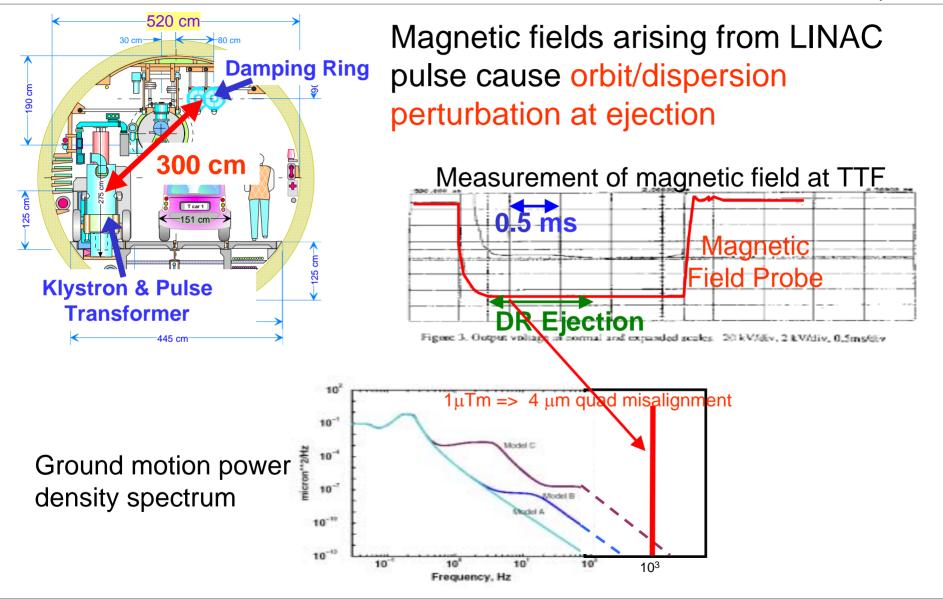
Possibility to over produce e⁺ and collimate

Dynamic aperture limited by wiggler insert

Optimize wiggler parameters

- Optimisation of wiggler field shape has never been done
- Increase of wiggler period length (>40cm) possible

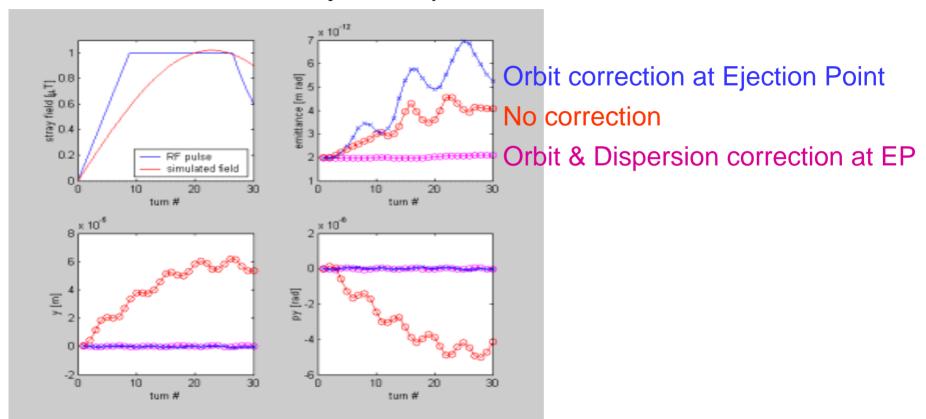
Optimize lattice design


- Smaller beta-functions
- Insert non-linear elements (octupoles)

Rings with lots of wiggler damping are operating (CESR) or will come into operation (PETRA III, 2008)

ITRP Visit to DESY, 5th/6th April 2004

Time Varying Stray Fields (1)



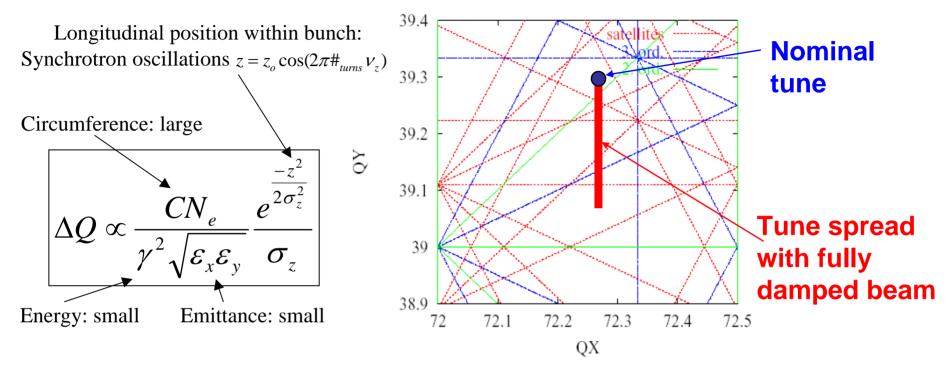
Time Varying Stray Fields (2)



Simulation of ejection process

Worst case scenario: average factor 2.5 in $\varepsilon_v \Rightarrow < 30\%$ lumi loss

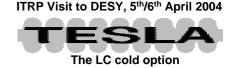
Time Varying Stray Fields (3)


Cures:

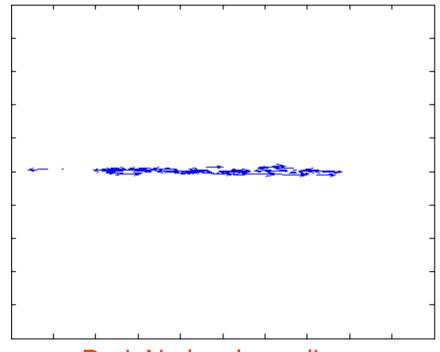
- Shielding (magnetic shielding difficult but eddy current shielding possible (2cm Cu/Al))
- Repetitive component (most?) can be compensated by fast kicker scheme (2 fast dispersive bumps in/at extraction)
- Second tunnel solution for DR (adds roughly ~150 MEuro)

ITRP Visit to DESY, 5th/6th April 2004

Space Charge Tune Shift (1)


- •Direct space charge force large because C/γ^2 is unusual large
- •Synchroton oscillations vary the particle position within the bunch, leading to incoherent tune spread, increasing while the beam is damped
- Particle amplitude growth when crossing resonances

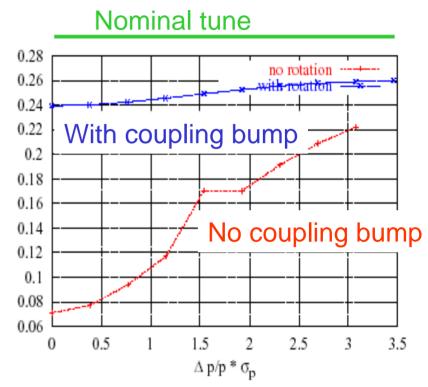
Space Charge Tune Shift (2)



- Proton synchrotrons operate with incoherent tune spread around 0.5
- Experience from PETRA II proton synchrotron:
 - Proton beam energy 7 GeV
 - Incoherent tune spread 0.1
 - Lifetime about 5 10 minutes
- A tune spread below 0.1 prevents amplitude increase
- Decrease the space charge tune shift:
 - Increase ε_{y} by factor 4 (always works)
 - This is worst case scenario, leads to 40 % lumi loss
 - Increase energy (difficult arc lattice, more RF,....)
 - Decrease ring length (kicker, e-cloud, ions)
 - Increase beam size locally

Space Charge—Local Coupling

- Skew quadrupole triplet
- Straight section (Linear Optics) Inverse skew quadrupole triplet
- 3. Inverse skew quadrupole triplet

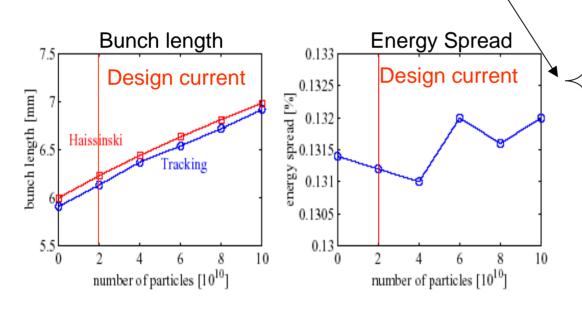

Red: No local coupling Blue: Local coupling

- Simple, tunable linear optics
- v_x v_y < 0.02 gives 10% emittance increase
- Orbit/Dispersion correction requires 4×4 algorithm

Space Charge - Tracking Results

- •Application of coupling bump keeps space charge tune shift below 0.1
- No amplitude increase observed in tracking

Particle tune versus initial longitudinal amplitude


Collective Effects-Single Bunch

 longitudinal microwave instability factor 5 below threshold from tracking

bunch lengthening

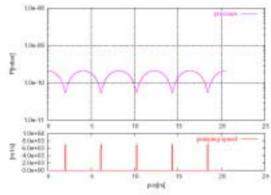
not observed in tracking simulations

Impedance budget

impedance badget					
Non-inductive	$Z_{ }/n$				
components	${ m m}\Omega$				
RF cavities	2.0				
Resistive wall	5.4				
Kickers	≈ 17				
Total	≈ 25				
Inductive	Z/n				
muucuve	$Z_{ }/n$				
components	$m\Omega$				
	11				
components	$m\Omega$				
components Bellows	mΩ ≈ 11				
components Bellows BPMs	$m\Omega \approx 11 \approx 12.5$				

 Z_{\parallel}/n is the effective impedance (machine impedance averaged with bunch spectrum) per unit length

• transverse mode-coupling threshold 96,000 K Ω , $Z_{\perp} \approx 4,000$ K Ω


Ion Effects

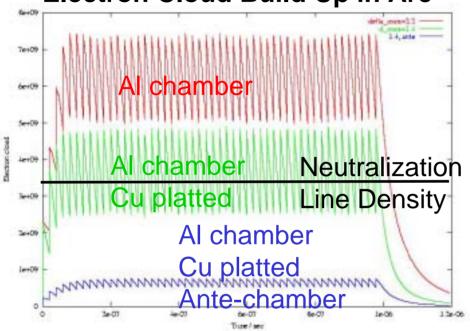
- TDR design pressure of 10⁻⁹ mbar
- Ion Trapping: Train gap of ≈600 ns needed to clear ions
- Tune Shift: In straight accumulated ions produce a tune shift of 0.28 at end of bunch train.
- Fast Ion Instability: Calculated growth time of the order of 100 μ s (for all DR). More studies needed.

Cures:

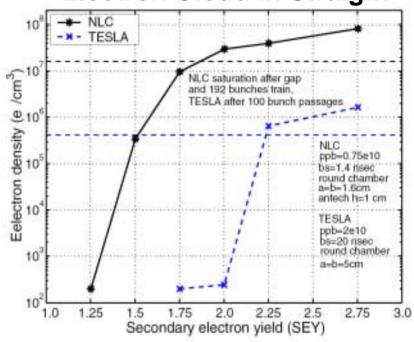
- Vacuum pressure of 10⁻¹⁰ mbar in straight, 10⁻⁹ mbar in arc
 - More pumps, ante-chamber in arc
 - Cost increase
- Intra-train clearing gaps

Ion effects can be mitigated by proper vacuum system design

Electron Cloud


- E-cloud is a world-wide observed and studied effect (next ICFA workshop April, part of EuroTeV proposal), with controversy results
- Issue for all DR, large TESLA Dogbone bunch-spacing helps preventing the e-cloud build-up
- Machines which suffered from e-clouds found ways to mitigate the effect
- E-cloud effects studied in collaboration with CERN
- Build up of the electron cloud occurs depending on
 - Vacuum chamber layout (geometry, ante-chamber,...)
 - Vacuum chamber material (Secondary emission yield)

ITRP Visit to DESY, 5th/6th April 2004


Electron Cloud – Build Up

Electron Cloud in Straight

Wiggler Section

- Ante-chamber design in the TDR
- Trapping of electrons in some sections of the wiggler observed in some simulations

Electron-Cloud Induced Instabilities

Effective wake leading to strong head-tail instability calculated assuming various e-cloud densities

	Arc	Straight	Wiggler	TEASLA DR			
Length / m	1900	14560	540	17000			
Scenario 1: neutralization density everywhere							
cloud charge density / 10^{12} m ⁻³	2.7	0.4	5.8	0.85			
effective wake field / threshold wake	0.577	0.59	0.359	1.526			
Scenario 2: neutralization density in wiggler							
cloud charge density / 10^{12} m ⁻³	0.75	0.01	5.8	0.28			
effective wake field / threshold wake	0.161	0.014	0.359	0.521			

50 % above threshold

100 % bellow threshold

- Single bunch head-tail instability threshold not reached even with neutralization in wiggler
- Multi-bunch growth rate within damping capabilities of MBFB system

E-cloud effects in the TESLA e⁺ DR can be mitigated by proper design of the vacuum system

ITRP Visit to DESY, 5th/6th April 2004

The LC cold option

ILCTRC Ranking 2 – All DR

- Simulation studies and experiments to understand the magnitude of electron cloud effects
 - Worldwide effort going on (ICFA, EuroTeV, ...)
- Further simulations and experiments of the fast ion instability
 - To be performed
- Damping ring extraction kicker stability (at level of <10-3) requires continued studies including experiments
 - Prototype build, test at TTF or PETRA possible
- Additional simulations of emittance correction in the damping rings are needed as well as experiments in existing machines
 - Continuing effort, experiments at light sources, ATF,
 PETRA and HERA possible

ITRP Visit to DESY, 5th/6th April 2004

ILCTRC Ranking 2 – TESLA Specific

- Development of a damping ring kicker with very fast rise and fall times
 - Prototype build and successfully tested
- Further dynamic aperture optimization of the ring
 - Optimization of wiggler etc. to be performed
 - ("This issue requires an aggressive effort to optimize the TESLA DR wiggler and/or lattice design. Such an effort is expected to produce a satisfactory solution", ILCTRC)
- Energy and luminosity upgrade to 800 GeV puts tighter requirements on DR alignment tolerances, and on suppression of electron and ion instabilities. Further studies are required.
 - 800 GeV parameter set to be adjusted

Summary

- TESLA Dogbone is a cost-effective solution for the TESLA damping ring
- Mature design including industrial studies for many components
- Based on world-wide experience with storage rings
- Unique features attract attention of many accelerator physicists world-wide
- ILCTRC has not identified any showstoppers